Jump to content
Sign in to follow this  
DownTR

Machine Learning, incl. Deep Learning, with R (Updated)

Recommended Posts


6be584498ce7492cd57031e0bc37f440.jpg
Machine Learning, incl. Deep Learning, with R (Updated)
.MP4 | Video: 1280x720, 30 fps(r) | Audio: AAC, 44100 Hz, 2ch | 7.26 GB
Duration: 15.5 hours | Genre: eLearning | Language: English


Statistical Machine Learning Techniques, and Deep Learning with Keras, and much more. (All R code included)
What you'll learn
You will learn to build state-of-the-art Machine Learning models with R.
Deep Learning models with Keras for Regression and Classification tasks
Convolutional Neural Networks with Keras for image classification
Regression Models (e.g. univariate, polynomial, multivariate)
Classification Models (e.g. Confusion Matrix, ROC, Logistic Regression, Decision Trees, Random Forests, SVM, Ensemble Learning)
Autoencoders with Keras
Pretrained Models and Transfer Learning with Keras
Regularization Techniques
Recurrent Neural Networks, especially LSTM
Association Rules (e.g. Apriori)
Clustering techniques (e.g. kmeans, hierarchical clustering, dbscan)
Dimensionality Reduction techniques (e.g. Principal Component Analysis, Factor Analysis, t-SNE)
Reinforcement Learning techniques (e.g. Upper Confidence Bound)
You will know how to evaluate your model, what underfitting and overfitting is, why resampling techniques are important, and how you can split your dataset into parts (train/validation/test).
We will understand the theory behind deep neural networks.
We will understand and implement convolutional neural networks - the most powerful technique for image recognition.
Requirements
Basic R Programming knowledge is helpful, but not required.
Description
Did you ever wonder how machines "learn" - in this course you will find out.
We will cover all fields of Machine Learning: Regression and Classification techniques, Clustering, Association Rules, Reinforcement Learning, and, possibly most importantly, Deep Learning for Regression, Classification, Convolutional Neural Networks, Autoencoders, Recurrent Neural Networks, ...
For each field, different algorithms are shown in detail: their core concepts are presented in 101 sessions. Here, you will understand how the algorithm works. Then we implement it together in lab sessions. We develop code, before I encourage you to work on exercise on your own, before you watch my solution examples. With this knowledge you can clearly identify a problem at hand and develop a plan of attack to solve it.
You will understand the advantages and disadvantages of different models and when to use which one. Furthermore, you will know how to take your knowledge into the real world.
You will get access to an interactive learning platform that will help you to understand the concepts much better.
In this course code will never come out of thin air via copy/paste. We will develop every important line of code together and I will tell you why and how we implement it.
Who this course is for:
R beginners and professionals with interest in Machine Learning and/or Deep Learning



22b63682a3e0ecdc71971f5beaea1db5.jpg







Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live

Sakriveni sadžaj

    Dajte reakciju na ovaj post pritiskom na "Like dugme", da biste videli sakriveni sadržaj.


Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

×